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Asymptotic solutions of the Klein-Gordon equation in a region near the event 
horizon of a radiating rotating charged black hole are obtained by using generalized 
tortoise coordinates. The location of the event horizon and the Hawking 
temperature of the black hole are given. Both the horizon and the temperature 
depend on the angle and time, due to radiation. However, they are independent 
of the angle if either rotation or radiation vanishes. The treatment encompasses 
as special cases the results on a number of well-known black holes. 

1. I N T R O D U C T I O N  

Since Hawking's  (1975) original discovery of black hole thermal radia- 
tion by using techniques of  quantum field theory on a given classical back- 
ground, quantum thermal radiation due to a black hole has been studied by 
different authors in different types of  spacetime, such as the Kerr (Zhao and 
Guai, 1983; Liu and Xu, 1980), Ker r -Newman (Damour and Ruffini, 1976; 
Zhao et al., 1981), N U T - K e r r - N e w m a n  (Ahmed, 1987), K e r r - N e w m a n -  
Kasuya (Ahmed and Mondal, 1993), Vaidya-Schwarzschi ld-de Sitter (Dai 
et al., 1993), and Vaidya-Bonner  (Dai and Zhao, 1992) spacetimes. In the 
present paper we use a new method proposed by Zhao, Dai, and Yang (Zhao 
and Dai, 1991, 1992) to study the Hawking radiation of a radiating rotating 
charged black hole. The metric which describes the external gravitational 
field of  such a black hole has been obtained by us recently (Jing and Wang, 
1996). The investigation of quantum effects in a radiating rotating charged 
black hole is interesting for the following reasons: (a) As is well known, 
black holes have, in general, radiation due to dynamical evolution of Hawking 
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evaporation (Birrell and Davies, 1982; William and Weems, 1990). Hence, 
the gravitational field surrounding a rotating charged black hole cannot be 
described by the stationary Kerr-Newman metric except in the approximation 
in which one neglects the energy density of the emitted radiation. Such an 
approximation may not be valid for certain processes, in which case the 
radiation must be taken into account. Fortunately, the radiating rotating 
charged metric can be used to model the dynamical evolution of the evaporat- 
ing charged black hole. (b) We hope that some new results may be obtained 
due to the radiation. (c) The results of the radiating rotating charged black 
hole will include the results of a number of well-known black holes as 
special cases. 

The plan of the paper is as follows. Section 2 deals with the structure 
of a quite general spacetime of a radiating rotating charged black hole. In 
Section 3 the Klein-Gordon equation in the region near the event horizon 
of the black hole is solved, and the location of the event horizon and the 
Hawking temperature are given; a brief discussion of the results obtained 
is given. 

2. METRIC OF A RADIATING ROTATING CHARGED BLACK 
H O L E  

The physical line element describing a radiating rotating charged black 
hole is given in the form (Jing and Wang, 1996) 

gla, p 

t 1 - (2mr-  Q2)p~ - 1  

-1 0 

0 0 

- a ( 2 m r  - Q2)p~ sin20 --a sin20 

0 -a(2mr -- Q2)p-~ sin20 

0 - a  sin20 

1 
0 

P~ 
a 2 + r 2] 

0 sin40[(Q 2 - 2mr)a2p-p sin21~-j 

(2.1 

It is a natural nonstationary generalization of the Kerr-Newman metric, 
where the latter has the same form but with constant m and Q. In metric 
(2.1) the parameter v is the Eddington-Finkelstein-type advanced time, and 
m(v) and Q(v) are the mass and charge of the radiating rotating charged body 
as seen by an observer at infinity, respectively; they are arbitrary functions 
of the advanced time coordinate. The total angular momentum of the body 
J(v) is given by m(v)a, where a is a constant just as in the Kerr-Newman case. 



Radiating Rotating Charged Black Hole 1747 

The contravariant components of the metric (2.1) are given by 

g~V 

--a 2 sinZ0 p~ --(a 2 + r2)pp 0 

--(a 2 + r2)p~ ( 2 m r  - -  r 2 - -  a 2 - -  Q2)p~ 0 

0 0 pff 

ap~ ap~ 0 

1 
ap~ 

0 

P~ 
sin20 

2.2) 

The classical properties of the solution are studied in detail by Jing and Wang 
(1992). We can use the metric (2.1) to model the dynamical evolution of the 
evaporating rotating charged black hole. The spacetime geometry of the black 
hole is characterized by two surfaces of particular interest: the apparent 
horizon ra and the event horizon rh. These coincide at r = 2M for a classical 
Schwarzschild hole. In general, these surfaces, all of which will be regarded 
as three-dimensional histories of topological spherical two-surfaces, do not 
coincide. In the spacetime (2.1) the apparent horizon rA is a timelike surface 
which can be found from g~ = 0. The event horizon is necessarily a null 
surface and is defined by the outermost locus traced by outgoing photons 
that can "never" reach arbitrarily large distance. From the equation of the 
null hypersurface condition 

o~r ,9f _ 0 
g~V Ox ~ Ox ~ 

and metric (2.2) we obtain the equation determining the event horizon as 
follows: 

a 2 sin20~h 2 _ 2(r 2 + a2)i.h + (r2h + a 2 + Q2 _ 2 m r h )  + r'h 2 

= 0  
(2.3) 

Here and hereafter 

rh = and r~, = 
=rh r=rh 

Equation (2.3) shows that the shape of the event horizon of the black hole 
is not spherically symmetric and depends on the time and the angle, due to 
the radiation. 
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3. Q U A N T U M  T H E R M A L  RADIATION OF THE RADIATING 
ROTATING C H A R G E D  B L A C K  H O L E  

The Klein-Gordon equation is expressed as 

Ox ~ ~ x  ~ - i~2~ = 0 (3.1) 

where p, represents the mass of the Klein-Gordon particles. Substituting the 
metric (2.1) into (3.1), we have 

a2(I ) r2 02(I ) 02~ 1 02~ 
--a 2 sin20 ~ v  2 + ( 2 m r  - Q2 _ _ a 2) Or 2 002 sin20 Oq 02 

02~ ~ O~ 02~ + 2a- 32~ + 2 a  s i n 0 - 2 r s i n 0  
- 2(r2 + a2) Ov Or 3v dip Or 3q~J Ov 

_ _  0 0 "  ( s i n 0 ] ,  
+ 2 ( m -  r) s i n 0 O ~ + c o s  PP ] Or 3-O - Ixz = 0 (3.2) 

In order to solve equation (3.2) in the region near the event horizon, we 
introduce the generalized tortoise coordinate transform (Zhao and Guei, 1983; 
Liu and Xu, 1980; Dai et al., 1993) 

r ,  = r + ~ ln[r - rh(V, 0)] 

v .  = v - v0, 0 ,  = 0 - 00 (3.3) 

where rh represents the location of the event horizon which is determined by 
equation (2.3), and the parameter K is unchanged under the tortoise coordinate 
transform. We will find that K is a temperature function. Using the coordinate 
transform (3.3), we can cast equation (3.2) into the form 

1 (--a2sin3OO2q9 ( Q2 r2 [ 1 ] 2 
Ov,--- 7 + sin 0 (2mr - - - a 2) 1 + 2 K ( r -  rh)' 

( - " -a2  sin20 2K(r--- ~2K(r - rh) + (a2 + rz) - -  

X 1 + 2K(r - rh) Or--~,- sin 0 002, sin 0 0~2, 

+ 

& 

K( r -  rh) 

202(I~ + - -  
3r ,  3v ,  

2a sin 0 02(I ) sin Or;, 3z~ a sin 0{ 1 + 2K(r - -  rh)  - -  i'h} + - - q -  
Ov, tgq~ K(r -- rh) Or, dO, K(r -- rh) 
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X + 
Or, 3~ 

[ f h ( r - - r h )  +i'2h] ( 2 m r - -  Q 2 _  r 2 _ a  2) s inO 
a2 sin30 / 2K(r -- r~ ~ ] - ~ ( ~  -- r S  2 

sin 0 (a 2 + r2)i'h 2r sin 0 ~h 
+ + 2 ( m -  r) s i n 0  

K ( r -  rh) 2 2 K ( r -  rh) 

cosOr~ ~ 3~ _ 2 r s i n 0  3q~ 0q~ 
2K(r - rh)J Or---7 ~V, COS 0 00---7 

r'/,(r - rh) + r~, 2 
+ sin 0 

2 K ( r -  rh) 2 

[ 1 ]  
X 1 + 2K(r2_ rh) 

Ix 2 ppSin 0 q~) = 0 

with 

{ [ 1 ] + a 2 s i n 2 0  ~h } F = s i n 0  - ( r  2 + a  2) 1 + 2 K ( r _ r h )  2K(r - - rh)  

(3.4) 

1 _ a2 sin20 • ( 2mr  - Q2 _ r 2 _ a 2) 1 + 2K(r--- rh) 2K(r---  rh) 

1 ' ] t  2K(r - rh) + (a2 + r2) K(r ~ rh) 2K(r--  rh) 

is an indefinite form as r ~ rh(Vo, 00). Using the L'H6spital rule and adjusting 
the value of the limit as r --~ rh(Vo, 00) (Damour and Ruffini, 1976; Zhao et 
al., 1981; Dai et al., 1993), we obtain 

{ ( m - - r h ) - - 2 r h i ' h  } (3.6) 
K = [a 2 s i n 2 0 -  (a 2 + r2)]i, h _ ~ 4 ~ r h - _ _  2Q 2 -  a 2 -  r 2) v=vo,O=0o 

It is easy to show that, as r --+ rh(Vo, 00), the coefficients of the terms 
O2~/Or, 00 , ,  O2~lOr,  &p, ,  and a ~ / O r ,  can respectively be expressed as 

2r~ ~ =  
a2 sin20o rh -- (a 2 + rh 2) 

2a(1 -- /'h) 
[3 a2 sin20 & _ (a 2 + rh2) 

a 2 sin20o i: h + r~ -- 6rhi'h -- cotg 00 r~ 
"y = a2 sin20o i'h _ (a 2 + r2h) (3.7) 

Making use of the equation of the event horizon (2.3), we know that the 
coefficient of the term 02~lOr ,  2 

( [ ] /-' 1 + a2 sin2 0 rh 
- - ( r  2 + a 2) 1 + 2K(r 2__ rh) 2K(r -- rh) 
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and the coefficients of the terms 02010v2,, 020/002, 020/0~p 2, 0010v , ,  001 
00,, and �9 tend to zero. Thus, as r -~ rh(Vo, 00), equation (3.4) reduces to 
the following standard form of the wave equation: 

020 020 3 0  020 020 + o ~ +  13 + y - - = 0  (3.8) 
Or---W, * + 2 Or, 3v----~, Or, 00 ,  Or, Oq~ Or, 

After separating the variables 

�9 = R(r,)O(0,)~(q~) exp(- i tov,)  (3.9) 

we find that (3.8) reads 

Or--T, * + ~/ - 2ito = - et ~ + [3 (3.10) 

This shows that both sides are equal to the same complex number h + i2tr. 
Then equation (3.10) can be rewritten as 

02R OR = 0 
Or---T, * + fh + ~ - 2i(to - tr)] Or---** 

dO 0q' 
et ~ + 13 ~ Oq~ - h + 2itr (3.11) 

Two linearly independent radial solutions of (3.11) are given by 

dp, t ~ e-i,,V e-(X +y)re2iI~,--,rlr (3.12) 

where ~ represents an incoming wave and is analytic on the event horizon; 
o,t however, represents an outgoing wave and has a logarithmic singularity (dr} t o  , 

on the horizon. Just outside the event horizon, substituting (3.3) into (3.12) 
and noting r .  - (1/2K) ln(r - rh), on the event horizon we have 

~out ~ e x p ( - i t o v . ) ( r  - r h ) - ( x + v y ( 2 K ) ( r  - -  r h )  i ( ~ - e ) / K  (3.13) 

We now extend the outgoing wave outside the horizon to the region inside. 
Since on the event horizon the outgoing wave function is not analytic and 
cannot be extended straightforwardly to the region inside, it must be continued 
analytically in the complex plane by going around the event horizon. Hence 
inside the event horizon 

f f jout~exp(_i tov,)(rh_r)_(x+.~)/(2K)(rh-  r)i(o~_m/~exp('rr(o~-o')) (3.14) 
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Introducing the step function 

( 1 f~ x - > 0  (3.15) 
y ( x )  = for x < 0  

we can generally express the outgoing wave function as 

q.tout = N{y(r_rh)d~out(r_rh)+y(rh_r)t~out(rh_r)exp['rr(t~ - t r ) ]}  

(3.16) 

where ~ , t  is the normalized Klein-Gordon wave function. According to the 
suggestion of Damour and Ruffini (1976) and Sannan (1988), and using the 
normalization condition, we obtain 

N2 = Fo, = Fo, (3.17) 
exp(2rr(to - O ' ) / K )  - -  t exp((to -- ~r)lkBT) - 1 

with 

K 
T - (3.18) 

2"trkB 

where F~, is the transmission coefficient caused by the potential barrier in 
the exterior gravitational field; ka is the Boltzmann constant. Equation (3.17) 
is the main formula demonstrating the emission of a thermal spectrum of 
Klein-Gordon particles of the radiating rotating charged black hole. The 
temperature of the thermal radiation is shown by (3.18) and the parameter 
K introduced in (3.3) is a temperature function. Equation (3.6) shows that K 
depends on the time and the angle, due to the radiation. It is interesting that 
K is independent of the angle if either rotation or radiation vanishes. For a 
stationary extreme Kerr-Newman black hole ( r  h = m), K = 0, but for the 
black hole, (3.6) shows that K r 0 when rh = m.  

Our work includes the results of: 
(a) The stationary Kerr-Newman black hole (Damour and Ruffini, 1976; 

Zhao e t  aL ,  1981) for m = const and Q = const. 
(b) The stationary Kerr black hole (Zhao and Guei, 1983; Liu and Xu, 

1980) when m = const and Q = 0. 
(c) The Reissner-NordstrSm black hole if m = const, Q = const, and 

a = 0 .  
(d) The Schwarzschild black hole (Zhao and Guei, 1983; Liu and Xu, 

1980) provided m = const, Q = 0, and a = 0. 
(e) The nonstationary Kerr black hole if Q = 0. 
(f) The radiating Vaidya-Bonner black hole (Dai and Zhao, 1992) when 

a = 0 .  
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(g) The radiating Vaidya black hole (Balbinat, 1986) for a = Q = 0. 

To summarize, the Hawking radiation of the radiating rotating charged 
black hole was studied by solving the Klein-Gordon equation in the region 
near the event horizon with the generalized tortoise coordinates. The location 
of the event horizon and the Hawking temperature of the black hole are 
given. Both the event horizon and the Hawking temperature depend on the 
angle and time, due to radiation. However, rh and K are independent of the 
angle when either radiation or rotation vanishes. The treatment encompasses 
the results of a number of well-known black holes as special cases. 
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